13 research outputs found

    The 2018 biomembrane curvature and remodeling roadmap

    Get PDF
    The importance of curvature as a structural feature of biological membranes has been recognized for many years and has fascinated scientists from a wide range of different backgrounds. On the one hand, changes in membrane morphology are involved in a plethora of phenomena involving the plasma membrane of eukaryotic cells, including endo-and exocytosis, phagocytosis and filopodia formation. On the other hand, a multitude of intracellular processes at the level of organelles rely on generation, modulation, and maintenance of membrane curvature to maintain the organelle shape and functionality. The contribution of biophysicists and biologists is essential for shedding light on the mechanistic understanding and quantification of these processes. Given the vast complexity of phenomena and mechanisms involved in the coupling between membrane shape and function, it is not always clear in what direction to advance to eventually arrive at an exhaustive understanding of this important research area. The 2018 Biomembrane Curvature and Remodeling Roadmap of Journal of Physics D: Applied Physics addresses this need for clarity and is intended to provide guidance both for students who have just entered the field as well as established scientists who would like to improve their orientation within this fascinating area

    Membrane geometry as a mediator of protein function and localization

    No full text

    Motility, Biofilm Formation and Antimicrobial Efflux of Sessile and Planktonic Cells of <i>Achromobacter xylosoxidans</i>

    No full text
    Achromobacter xylosoxidans is an innately multidrug-resistant bacterium capable of forming biofilms in the respiratory tract of cystic fibrosis (CF) patients. During the transition from the planktonic stage to biofilm growth, bacteria undergo a transcriptionally regulated differentiation. An isolate of A. xylosoxidans cultured from the sputum of a CF patient was separated into sessile and planktonic stages in vitro, and the transcriptomes were compared. The selected genes of interest were subsequently inactivated, and flagellar motility was found to be decisive for biofilm formation in vitro. The spectrum of a new resistance-nodulation-cell division (RND)-type multidrug efflux pump (AxyEF-OprN) was characterized by inactivation of the membrane fusion protein. AxyEF-OprN is capable of extruding some fluoroquinolones (levofloxacin and ciprofloxacin), tetracyclines (doxycycline and tigecycline) and carpabenems (ertapenem and imipenem), which are classes of antimicrobials that are widely used for treatment of CF pulmonary infections

    Novel peptide ligand with high binding capacity for antibody purification

    No full text
    Small synthetic ligands for protein purification have become increasingly interesting with the growing need for cheap chromatographic materials for protein purification and especially for the purification of monoclonal antibodies (mAbs). Today, Protein A-based chromatographic resins are the most commonly used capture step in mAb down stream processing; however, the use of Protein A chromatography is less attractive due to toxic ligand leakage as well as high cost. Whether used as an alternative to the Protein A chromatographic media or as a subsequent polishing step, small synthetic peptide ligands have an advantage over biological ligands; they are cheaper to produce, ligand leakage by enzymatic degradation is either eliminated or significantly reduced, and they can in general better withstand cleaning in place (CIP) conditions such as 0.1 M NaOH. Here, we present a novel synthetic peptide ligand for purification of human IgG. Immobilized on WorkBeads, an agarose-based base matrix from Bio-Works, the ligand has a dynamic binding capacity of up to 48 mg/mL and purifies IgG from harvest cell culture fluid with purities and recovery of >93%. The binding affinity is similar to 10(5) M-1 and the interaction is favorable and entropy-driven with an enthalpy penalty. Our results show that the binding of the Fc fragment of IgG is mediated by hydrophobic interactions and that elution at low pH is most likely due to electrostatic repulsion. Furthermore, we have separated aggregated IgG from non-aggregated IgG, indicating that the ligand could be used both as a primary purification step of IgG as well as a subsequent polishing step. (C) 2012 Elsevier B.V. All rights reserved
    corecore